
Introduction

In the context of global warming, low-carbon 
economy has attracted more and more countries’ 
attention. China is no exception. In order to cope with 
climate change, China is developing a Low-carbon 
economy. Forestry is an important part of China’s 
national economy and a key element of building  

a well-off society in an all-round way. At a voluntary 
tree planting activity held on March 20, 2022  
in Beijing, General Secretary Xi Jinping said that  
the forest is a reservoir, a money bank, a grain depot, 
and a “carbon bank”. Forest relates to the realization 
of the goals of carbon peak and carbon neutrality.  
In recent years, China’s forestry sector develops rapidly. 
More investments in it are made and its output value 
continue to increase. Due to the scarcity of forest 
resources, reducing investment and improving forest 
productivity are the main means to promote forestry 
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growth. Forest productivity is the basis for formulating 
policies on sustainable forest development. Therefore, 
calculating it and analyzing the impact of CO2 emissions 
and economic loss on it are of great significance for the 
sustainable development of China’s forestry, economy 
and society with high quality.

Existing studies on forest productivity focuses on its 
measurement, influencing factors and impacts on CO2 
emissions, in which it was mainly measured through data 
envelopment analysis (DEA) [1-3], stochastic frontier 
analysis (SFA) [4-5], DEA-Malmquist productivity  
index (MPI) and C-D function-based productivity 
index [6-9], and sometimes calculated with slack based 
measure (SBM) [10-12].

There have been discussions on factors influencing 
forest productivity [13-16]. For example, Lin et al. (2020) 
checked the impacts of foreign direct investment on the 
productivity of Chinese forestry companies and found 
that the impacts were complicated [17]. Wu and Zhang 
(2020) examined the impacts of internet on forestry and 
how do different internet technologies optimize and 
coordinate clean production [18]. The digital economy 
can significantly promote an improvement in forestry 
green total factor productivity [19]. They found that 
technology-based internet and platform-based internet 
produce positive impacts on forestry clean production in 
the short term, of which technology-based internet exerts 
a greater impact. But in the long run, technology-based 
internet hinders the improvement of green technology 
efficiency and the progress of green technologies. 
Xiong et al. (2018) measured the regional differences 
of forest productivity in northeast China and identified 
six factors influencing it [20]. The conclusion was that 
the per capita GDP, forest coverage rate, educational 
background of practitioners and quantity of township 
forestry technology stations are positively related to 
forest productivity, whereas collective forestry tenure 
reform produces negative impacts on it.

Many scholars worked on the impact of forest 
area and forest management on CO2 emissions [21]. 
Koondhar et al. (2021) probed into the relationships 
among CO2 emissions, renewable energy consumption, 
forestry and agricultural added value between 1998 
and 2018. According to them, the decrease of CO2 
emissions was related to the increase of forest area 
both in the long run and short term [22]. Raihan and 
Tuspekova (2022) investigated the potential of forest 
reducing CO2 emissions to realize sustainability in 
Malaysian environment based on time sequence data 
from 1990 to 2019. The results indicated that increased 
use of renewable energy and forest area can reduce CO2 
emissions [23]. Aziz and Mighri (2022) explored the role 
of forest activities in CO2 emissions in different Chinese 
provinces with forest area and forest investment as sub-
proxy variables. They revealed that forest investment is 
significantly negatively related to CO2 emissions, while 
proper and continuous increase of forest management 
activities helps reduce CO2 emissions [24]. Raihan et 
al. (2022) focused on how technological innovation  

and forest area helped Bangladesh achieve environmental 
sustainability and found that technological innovation 
and forest area are conducive to achieving environmental 
sustainability through reducing CO2 emissions [25]. 
Li et al. (2021) studied the role of forest management 
in controlling CO2 emissions in China. The results 
suggested that forest investment and management 
not only reduce local CO2 emissions, but also lower 
emissions in neighboring provinces [26]. Rehman et 
al. (2021) studied the influence of forestry production 
and crop production on CO2 emissions in Pakistan. 
Long-term dynamic analysis reveals that forestry 
production and rainfall have constructive impacts on 
CO2 emissions, whereas crop production has negative 
impacts on CO2 emissions. Analysis of short-term data 
indicates that forestry production and crop production 
have a positive impact on CO2 emissions [27]. Rehman 
et al. (2021) discussed the asymmetric impact of crop 
production and forestry production on CO2 emissions in 
China from 1970 to 2017. They concluded that positive 
impacts on crop production deteriorate atmospheric 
quality in the long run by intensifying CO2 emissions, 
and that forestry fluctuations do not have any significant 
impact on CO2 emissions in China [28]. Liu et al. 
(2022) analyzed annual banking statistics of the World 
Bank from 1990 to 2020 to explore the asymmetric 
relationship between the development of China’s 
agricultural and forestry, energy consumption and CO2 
emissions using Granger causality test [29]. They found 
that energy consumption, economic development, and 
CO2 emissions boost agricultural and forestry growth; 
in the next three years, China’s agricultural and forestry 
growth will slow down due to the three factors. Besides, 
China’s CO2 emissions were affected by the pulse 
responses of energy consumption and agricultural and 
forestry growth, falling first and then rising. A small 
number of sources focuses on the influence of forest 
productivity on CO2 emissions. For example, Zhong and 
Wang (2021) calculated total factor forestry productivity 
and its factorization index using global DEA-Malmquist 
productivity index. They indicated that the influence of 
total factor forestry productivity on CO2 emissions is in 
a U-shaped curve [30].

In summary, rich works on forest productivity lay  
a solid foundation for this study. However, they have  
the following shortcomings. First of all, most of them 
focus on the impact of forestry production and forestry 
area on CO2 emissions, whereas few explore the impact 
of CO2 emissions on forestry production, even fewer 
examine the influence of CO2 emissions on forest 
productivity. Secondly, there are rare studies of the 
influence of economic loss caused by environmental 
pollution, natural disasters, geological disasters and 
forest fires on forest productivity. Thirdly, most 
of existing literature employs first-generation unit 
root test and traditional econometric methods. This 
study may make the following contributions. First, 
data of 30 Chinese provinces from 2004 to 2020 are 
analyzed to examine the impact of CO2 emissions on 
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forest productivity. Second, the mean group (MG) 
estimation are used to investigate the impacts of direct 
economic loss caused by environmental pollution, 
natural disasters, geological disasters and forest fires 
on forest productivity. Third, robust second-generation 
econometric tests are conducted, including cross-
sectional dependence, second-generation panel unit 
(cross-sectionally augmented, IPS) CIPS test, slope 
heterogeneity and mean group test. Fully modified 
OLS (FMOLS) and dynamic OLS (DOLS) are used to 
check the stability of results. Fourth, this study offers 
theoretical and empirical reference for coordinated, 
sustainable and high-quality development of green 
forestry.

Materials and Methods

Data used herein mainly come from the China 
Statistical Yearbook, the China Forestry Statistical 
Yearbook, the China Statistics Yearbook on 
Environment, the China Rural Statistical Yearbook, the 
China Statistical Yearbook on Science and Technology, 
the China Land and Resources Almanac, statistical 
yearbooks of 30 Chinese provinces under study, the 
website of China National Bureau of Statistics, and the 
website of 30 provincial (municipal) bureaus of statistics.

Scope of Study

This paper mainly probes into the influence of CO2 
emissions and economic loss on forest productivity in 
30 provinces in the Chinese Mainland from 2004 to 
2020. Tibet is not included because of a lack of data for 
many years.

Methods

Entropy Weight Method

We drew on the carbon productivity measurement 
method used by the Organization for Economic 
Cooperation and Development (OECD) to calculate 
forest productivity (FP). The first step was to build an 
indicator system and obtain forest indicator (FI), for 
which entropy weight method was used. The entropy 
weight method can make full use of the original data, 
not only with higher accuracy and objectivity, but also 
with better interpretation of the obtained results. The FP 
formula is as follows:

FIFP
GDP

=
                          (1)

China upholds new development concepts, drives 
high-quality development, and implements the strategy 
of innovation-driven development, which also applies to 
forestry. By advocating the philosophy that lucid waters 

and lush mountains are invaluable assets, it promotes 
the high-quality development of forestry. We built a 
forest indicator evaluation system following the concept 
of “innovation, green, clean and security”. Drawing on 
related research, we set the evaluation system as below 
based on operability and data availability.

The weights of the indicators are calculated using 
entropy method. The steps of calculation are:

Firstly, the selection of indicators. We employed s 
years, n provinces, m indices, and Ptij the jth index value 
of province i in year t.

Secondly, the standardization of indicators. In 
order to eliminate differences in the unit and quantity 
dimension of indicators, basic indicators for the FI of 
30 provinces were standardized with range method. 
Different standardization calculations were applied to 
measure positive indicators and negative indicators.

The formula for standardizing positive indicators is:
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The formula for standardizing negative indicators is:
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We performed translation of coordinates on 
standardized data:
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                        (4)

Thirdly, we calculated the entropy value hj of 
indicator j,
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based on entropy hj.
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Finally, based on the above calculations, the FI ti can 
be obtained:



Liu X., et al.1804

1

m

ti j tij
j

FI w P
=
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                     (7)

With the help of evaluation indicator system and 
above measurement methods, the FI of the 30 provinces 
in China from 2004 to 2020 were obtained. 

Mean Group Estimator

We performed cross-sectional dependence tests 
before measurement and analysis (Pesaran, 2015) [31]. 
Cross-sectional dependence is related to several factors 
like economic proximity, residual interdependency, and 
hidden observed and unobserved factors [31-32]. If it is 
ignored, there may be biases and inaccurate statistics in 
panel data estimation [31].

Slope heterogeneity is another problem to be 
considered [33]. The method used by Pesaran and 
Yamagata (2008) is adopted in this study [34], which 
performs better if the sample size is small [35].  
The null hypothesis for slope heterogeneity is that slope 
parameters are homogeneous, while the alternative 
hypothesis is that slope parameters are heterogeneous.

Next, we tested the stationarity of panel data. Since 
first-generation unit root tests such as ADF and IPS 
do not take into consideration slope heterogeneity and 
cross-sectional dependence, we performed CIPS test 
[36].

Afterwards, panel co-integration tests developed by 
Pedroni (2004), Kao’s (1999) and Westerlund (2005) 
were conducted to check long-term co-integration 
among variables. This makes test results more reliable 
and consistent [37-39].

Mean group estimator was used to evaluate the 
impact of CO2 emissions and economic loss on forest 
productivity in China [40]. Long-term coefficients were 
obtained using auto-regressive distributed lag (ARDL) 
model [41], as Kusairi et al. (2019) [42].

1it i i it i it itY Y X uα γ β−= + + +              (8)

Yit is the dependent variable, Xit the independent 
variable, and βi the estimator coefficient of a particular 
province.

The long-run parameter of province i is (Kusairi et 
al., 2019):

                             1
i

i
i

βθ
γ

=
−                             (9)

Mean group estimators for the full panel were 
obtained with the equation below (Kusairi et al., 2019):

                    (10)

Mean group allows changes in the variance of 
intercepts, short-term parameters and cross-group 
errors. It ensures stable consistency of long-term 
coefficients [43].

FMOLS and DOLS

FMOLS and DOLS were adopted to check the 
robustness of results.

We applied Pedroni’s (2000) fully modified 
OLS (FMOLS) to benchmark model to estimate the 
heterogeneous cointegration vectors of panel data [44]. 
Pedroni (2000) used the cointegration system below to 
analyze panel data [45]:

it iti itY Xβα ε= + +                  (11)

When Y and X are cointegrated, Pedroni (2001) 
built a new equation to control the feedback effect of 
endogenous explanatory variables [46]:
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)
 is the 

long-term covariance of the above equation.
The matrix of long-term covariance was broken 

down into: Ωi = Ωi
0 + Γi + Γi

', in which Ωi
0 indicates the 

covariance of the same period, and Γi the weighted sum 
of the autocovariance. The panel FMOLS formula is:

(13)

and

.

The DOLS representation is shown in Eq. (14).

        (14)

Where Zit = (Xit – X̅ i, Δ Xit–k, ..., Xit+k) is 2(K+1)×1 
vector of regressors.

Model Specification

The following model was built to explore the 
impact of CO2 emissions and economic loss on forest 
productivity:

FPit= f (CEit, ELit, TIit, SEit)           (15)
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factor of energy i, and 44( )
12i i iCF CC COF× × ×  the CE 

coefficient of energy i. Based on the heating value (CF), 
carbon content (CC) and carbon oxidation factor (COF) 
of various energy sources in the IPCC Guidelines  
for National Greenhouse Gas Inventory 2006 and  
the China Energy Statistical Yearbook 2019, the CE 
(unit: 10,000 tons of standard coal) of 30 Chinese 
provinces from 2004 to 2020 are calculated. Energy 
consumption and energy balance tables come from the 
Chinese Energy Statistical Yearbook from 2005 to 2021.

Descriptive statistics of variables are shown in 
Table 2. The mean values of forest productivity, CO2 
emissions, economic loss, technical innovation and 
the share of secondary industry are 0.2193, 10.5131, 
106.6343, 1.5166 and 45.14.

Results

Cross-Sectional Dependence Test

Along with integrated development, Chinese 
provinces are increasingly interdependent, so the 
missing of cross-sectional dependence may lead to 
severe economic consequences [48-49]. Therefore, we 
discussed cross-sectional dependence with the help of 
the test method developed by Pesaran (2015) [31]. Table 
3 presents the results, which indicate that all variables, 
including forest productivity, CO2 emissions, economic 

In the above equation, i refers to province, t means 
the year (from 2004 to 2020). How forest productivity 
was calculated has been explained above. CE indicates 
per capita carbon emissions (unit: tons of standard coal). 
Economic loss (EL) is the sum of direct economic losses 
brought by environmental pollution, natural disasters, 
geological disasters and forest fires (unit: 100 million 
CNY). Technical innovation (TI) is represented with the 
proportion of R&D expenditure in GDP (unit: %). SE 
refers to the industrial structure, which is expressed by 
the output value of the second industry (unit: %).

The form of regression of Eq. (15) is shown below:

FPit = δ1it + δ2itCEit + δ3itELit + δ4itTIit + δ5itSEit + εit 
 (16)

All variables are in natural logarithm.ε refers to 
error term.  

Evaluation CE

As China didn’t announce statistics of the CE of 
provinces from 2004 to 2020, we propose the formula 
below to calculate CE [47].

1 1

44( )
12

n n

i i i ii
i i

E CF CC COFCE
= =

= × × × ×∑ ∑
          (17)

where n means type of energy, Ei the consumption of 
energy i calculated by standard coal, CFi, CCi and COFi 
the heating value, carbon content and carbon oxidation 

Table 1. Forest indicator system

Dimension Indicator Indicator description Indicator 
direction

Innovation R&D funding intensity R&D/ region GDP +

Full-time equivalent ratio of 
R&D personnel 

Full-time equivalent of R&D personnel/ population at the end of 
the year (%) +

Number of per capita patents Number of patents authorized/ total population at the end of the 
year (piece/ 10,000 people) +

Green Forest coverage Forest area ÷ total land area × 100% (%) +

Forest stock volume Forest stock volume (10,000 m3) +

Living wood growing stock Living wood growing stock (10,000 m3) +

Clean Sulfur dioxide emissions Sulfur dioxide emissions in industrial exhaust gas (10,000 tons) -

Chemical oxygen demand Chemical oxygen demand in wastewater (10,000 tons) -

Ammoniacal nitrogen emissions Ammoniacal nitrogen in wastewater (10,000 tons) -

Industrial solid waste Industrial waste generated (10,000 tons) -

Security Forestry investment completion Completion of forestry investment of the year (10,000 CNY) +

Number of forestry practitioners Forestry practitioners at the end of the year (person) +

Forestry total output value Total output value of forestry (100 million CNY) +

Afforestation area Total afforestation area (hectare) +

Forest area Forest area (10,000 hectares) +
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loss, technical innovation and the share of secondary 
industry, rejected the null hypothesis that cross-sectional 
dependence does not exist at the 1% significance level. In 
other words, it existed among all the variables studied.

Table 4 shows the result of slope heterogeneity test 
(Pesaran and Yamagata, 2008). Δ̃ and Δ̃ adjusted tests 
rejected the null hypothesis on slope homogeneity at the 
1% significance level.

Panel Unit Root and Co-Integration Tests

Given the presence of cross-sectional dependence 
among variables and slope heterogeneity in our model, 
we used CIPS to better determine the property of unit 
root in the presence of cross-sectional dependence  
[50-51]. Table 5 shows the results. At the 10% 
significance level, all the variables rejected the null 
hypothesis concerning non-stationarity. In other words, 

CIPS test showed all variables were stationary at the 1% 
significance level, i.e., I (0) stationarity.

We tried to find out whether there was long-term 
co-integration among variables using co-integration 
tests developed by Pedroni, Kao and Westerlund [38-
39, 52]. Table 6 presents the results. Pedroni’s residual  
co-integration test showed that in both within and 
between dimension test, the null hypothesis was 
rejected, and variables in Eq. (16) were co-integrated. 
Kao test and Westerlund (2005) co-integration test 
showed there was co-integration among all the variables. 
The results are consistent, which indicates that all the 
variables were co-integrated. In other words, there was 
a stable and long-term relationship between variables in 
this study and forest productivity.

MG Regression Results

We explored the impact of CO2 emissions, economic 
loss and other variables on forest productivity with 
mean group estimator (Pesaran, 1995). Table 7 
shows the results. The coefficient of CO2 emissions 
was significantly negative. CO2 emissions and forest 
productivity were negatively correlated. The higher 
the CO2 emissions, the lower the forest productivity. 

Table 2. Descriptive statistics.

FP CE EL TI SE

Mean  0.2193  10.5131  106.6343  1.5166  45.1400

Median  0.1919  8.0227  78.2257  1.2214  46.6000

Max.  0.6663  54.3051  1221.6130  6.4400  61.5000

Min.  0.0285  1.4394  0.0143  0.1783  15.8000

S. D.  0.1326  8.0331  119.1549  1.0989  8.6217

Ske.  1.0250  2.2564  3.2040  2.0355 -1.0093

Kur.  3.7636  9.0239  21.1756  7.8859  3.9456

J.B.  101.6969  1203.903  7892.582  859.4967  105.5956

Prob. 0.0000 0.0000 0.0000 0.0000 0.0000

Observations 510 510 510 510 510

Table 3. Results of Cross-section dependence test (CSD test).

Table 4. Pesaran and Yamagata (2008) SH test results.

Variables
CSD -Statistics
Pesaran(2015) 

test[31]
P-Value corr abs (corr)

lnFP 42.43 0.000 0.493 0.550

lnCE 68.58 0.000 0.797 0.826

lnEL 11.39 0.000 0.132 0.236

lnTI 60.53 0.000 0.704 0.743

lnSE 61.58 0.000 0.716 0.716

Value

Δ̃ 10.845 ***(0.000)

Δ̃ Adjusted 13.482 ***(0.000)

Note: ***p <0.001. p-values are reported in parentheses.

Table 5. Results of CIPS unit root test. 

Variables At level

Intercept Intercept & trend

Z[t-bar] P-Value Z[t-bar] P-Value

lnFP -2.051 0.020 -3.227 0.001

lnCE -2.643 0.004 -0.512 0.304

lnEL -11.434 0.000 -9.909 0.000

lnTI 0.579 0.719 -2.030 0.021

lnSE -1.601 0.055 -1.504 0.066
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The coefficient of economic loss was also significantly 
negative. That is to say, the bigger the direct economic 
loss caused by environmental pollution and natural 
disasters in China, the lower the forest productivity. 
Conversely, the smaller the economic loss in China, 
the higher the forest productivity. The coefficient of 
technical innovation was significantly positive, which 
means China can increase forest productivity by 
expanding investments in R&D. The coefficient of the 
share of secondary industry was significantly negative, 
which means rising the share of secondary industry can 
reduce forest productivity.

Regional Analysis

China is a vast country. CO2 emissions and 
economic loss vary in different regions, that is, they 
have regional heterogeneity. It is of great significance 
to study their impacts on forest productivity in different 
regions to gain a comprehensive understanding of forest 
productivity in China. We used mean group to estimate 
the impact of CO2 emissions, economic loss and other 
variables on forest productivity in east, middle and west 
China. Results are shown in Table 8.

The coefficients of CO2 emissions in east and west 
China were significantly negative. Increasing CO2 

emissions in both regions reduced forest productivity. 
Specifically, CO2 emissions in west China had the 
greatest impact on forest productivity, followed by 
east China. The coefficients of economic loss in west, 
east and middle China were all negative, but those 
in east and middle China did not pass significance 
test. The coefficient of economic loss in west China 
was significantly negative, and economic loss in west 
China effectively reduced forest productivity. West 
China suffered the greatest economic loss caused 
by environmental pollution. As it had the most 
abundant forest resources, it embraced the highest 
forest productivity and the impact of economic loss on 
forest productivity there was the most significant. The 
coefficients of technical innovation in east and west 
China were positive, with that in east China not passing 
significance test. In other words, the rise of technical 
innovation in west China significantly increased forest 
productivity. The coefficients of industrial structure in 
east and middle China were significantly negative, which 
means increasing proportion of secondary industry can 
reduce forest productivity.

Robustness Test

In order to validate the above empirical results, we 
checked their robustness using FMOLS and DOLS. 
Estimation results of full panel data and each region 
are shown in Table 9. The results of FMOLS and DOLS 
full panel estimation were similar to those of mean 
group estimation. The coefficients of CO2 emissions and 
economic loss were both significantly negative. That is, 
decreasing CO2 emissions and economic loss effectively 
increased forest productivity. Both FMOLS and DOLS 
showed that the estimation coefficients of CO2 emissions 
in west, east and middle China were significantly 
negative. In order to improve forest productivity in the 
three regions, it is necessary to lower CO2 emissions. 

Table 6. Results of panel cointegration tests.

Table 7. Full panel MG estimation results.

Pedroniˊs residual cointegration test

Within-dimension Statistics P-Value Between-dimension Statistics P-Value

Panel v-stat  0.5626  0.2868

Panel rho-stat  1.4502  0.9265 Group rho-Stat  4.2048 1.0000

Panel PP-stat -6.6690  0.0000 Group PP-Stat -6.7175  0.0000

Panel ADF-stat -2.0901  0.0183 Group ADF-Stat -1.5580  0.0596

Kao′s (1999) Residual Cointegration Test Westerlund (2005) Co-integration Test

t-Statistic P-Value Statistic P-Value

ADF -2.2062  0.0137 Variance ratio -2.2915   0.0110

Residual variance  0.0057

HAC variance  0.0044

Note: The null hypothesis is that variables are not cointegrated, based on the hysteretic selection of SIC. 

Variables Coef. Std. Err. Z P-Value

lnCE -0.1765 0.0451 -3.91 0.000

lnEL -0.0116 0.0067 1.72 0.085

lnTI 0.1206 0.0574 2.10 0.036

lnSE -0.6562 0.1213 -5.41 0.000

Constant 1.2483 0.4727 2.64 0.008
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The coefficients of economic loss in west, east and 
middle China were all negative, but those in east and 
middle China did not pass significance test, while the 
coefficient of economic loss in west China did, which 
is consistent with MG estimation results. FMOLS and 
DOLS results showed that the coefficients of technical 
innovation in west and middle China were significantly 
positive, which means increasing R&D investment in the 
two regions can effectively increase forest productivity. 
FMOLS and DOLS estimation results in west, east and 
middle China were significantly negative, which means 
decreasing proportion of secondary industry in the three 
regions can effectively increase forest productivity.  
In conclusion, robustness test showed that mean group 
estimation in this study is robust.

Discussions

This paper studies the impact of CO2 emissions 
and economic loss on forest productivity. In Table 7, 

the coefficient of CO2 emissions is -0.1765, which 
means when CO2 emissions decreases by 1%, forest 
productivity will increase by 0.1765%. That is, 
reducing CO2 emissions can effectively improve forest 
productivity. This also means that reducing CO2 
emissions has important practical significance for 
China. By reducing CO2 emissions, it will not only help 
China achieve its goal of carbon neutrality, but also help 
China increase forest productivity. The coefficient of 
economic loss is -0.0116, which means economic loss 
will reduce forest productivity. CO2 emissions will bring 
about the greenhouse effect, making the temperature 
rise. Rising temperature will cause insect infestation, 
which will affect and reduce forest productivity.  
In addition, CO2 emissions will cause bad weather, 
drought, rain and other natural disasters. These natural 
disasters will directly and indirectly bring economic 
loss and thus reduce forest productivity. Therefore, 
in order to increase China’s forest productivity, it is 
necessary to reduce CO2 emissions and economic 
loss. The coefficient of technical innovation was 

Table 8. Regional MG estimation results. 

Table 9. FMOLS and DOLS aggregate and regional estimations.

Eastern region Central region Western region

Long-run estimation results

Variables Coef. Std.Err. P-value Coef. Std.Err. P-value Coef. Std.Err. P-value

lnCE -0.1795     0.0810 0.027 -0.0752 0.0929 0.418 -0.2471     0.0625 0.000

lnEL -0.0061 0.0082 0.464 -0.0034 0.0181 0.850 -0.0232     0.0102 0.023

lnTI 0.0811     0.0842 0.336 -0.0119 0.0990 0.904 0.2564     0.1035 0.013

lnSE -0.9244     0.1804 0.000 -0.6363 0.1057 0.000 -0.4024     0.2542 0.114

Constant 1.6535 0.8566 0.054 1.2136 0.4575 0.008 0.8682     0.9465 0.359

FMOLS

Full Panel Eastern region Central region Western region

Variables Coef. Std.Error Coef. Std.Error Coef. Std.Error Coef. Std.Error

lnCE -0.1389*** 0.032559 -0.1094* 0.0599 -0.1251* 0.0671 -0.1346*** 0.0367

lnEL -0.0208*** 0.007385 -0.0085 0.0059 -0.0049 0.0148 -0.0573*** 0.0128

lnTI 0.1299*** 0.036602 0.0263 0.0453 0.1063* 0.0628 0.1055** 0.0509

lnSE -0.5107*** 0.052460 -0.9175*** 0.0864 -0.4929*** 0.0710 -0.4051*** 0.0852

DOLS

Variables Full Panel Eastern region Central region Western region

Coef. Std.Error Coef. Std.Error Coef. Std.Error Coef. Std.Error

lnCE -0.1345*** 0.0347 -0.2309** 0.1047 -0.1052* 0.0613 -0.1385*** 0.0468

lnEL -0.0208** -0.0208 -0.0130 0.0127 -0.0310 0.0227 -0.0608*** 0.0169

lnTI 0.1024** 0.0403 0.0436 0.0771 0.1152* 0.0667 0.1200* 0.0620

lnSE -0.5489*** 0.0504 -0.9216*** 0.1359 -0.5480*** 0.0591 -0.4336*** 0.0980
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significantly positive. Increasing technical innovation 
by 1 percentage point will increase forest productivity 
by 0.1206 percentage points. Therefore, in order to 
improve forest productivity, we should further improve 
technical innovation, expand R&D investment, improve 
the quality and efficiency of forestry production by 
improving technical innovation, and effectively enhance 
forestry output.

CO2 emissions had the greatest impact on forest 
productivity in west China, followed by east China, 
which suggests that reducing CO2 emissions in west 
China was the most important among the three regions 
studied. CO2 emissions in west China was the highest 
among the three regions, so it is particularly urgent to 
reduce emissions there. Meanwhile, among the three 
regions, only the coefficient of economic loss in west 
China was significantly negative. Decreasing economic 
loss in west China by 1 percentage point will increase 
forest productivity by 0.0232 percentage point. Although 
the coefficients of technical innovation in east and west 
China were both positive, that in east China did not pass 
significance test. The coefficient of technical innovation 
in west China was significantly positive. Therefore, 
it is of great significance to improve R&D investment 
in west China to improve local forest productivity. 
The coefficients of SE in east and middle China were 
significantly negative. Second industry consumed  
a large amount of fossil energy such as coal and oil, and 
contributed a lot to CO2 emissions. Therefore, the rise 
of the proportion of secondary industry would reduce 
forest productivity.

Conclusions and Implications

Conclusions

This study measures forest productivity and 
empirically validates the impacts of CO2 emissions and 
economic loss on forest productivity using panel data 
on 30 Chinese provinces from 2004 to 2020. Our major 
conclusions are: First, full panel mean group estimation 
showed that CO2 emissions had significant negative 
impacts on forest productivity in China. Second, the 
coefficient of economic loss was significantly negative, 
which means reducing economic loss can increase forest 
productivity. Technical innovation exerted positive 
impacts on forest productivity, whereas industrial 
structure had negative impacts on it. Furthermore, 
regional heterogeneity analysis indicates that CO2 
emissions in west China had the greatest impact 
on forest productivity, followed by east China. The 
coefficients of economic loss in west, east and middle 
China were all negative, with those in east and middle 
China not passing significance test. The decrease of 
economic loss in west China effectively increased forest 
productivity. The coefficients of technical innovation in 
east and west China were both positive, while that in 
east China did not pass significance test. The coefficient 

of technical innovation in west China was significantly 
positive, which means the improvement of technical 
innovation in west China would significantly increase 
forest productivity. The coefficients of industrial 
structure in east and middle China were significantly 
negative, which means increasing the proportion of 
secondary industry could decrease forest productivity.

Policy Implications

We put forward the following policy implications 
based on empirical results to improve forest productivity:

First of all, efforts should be made to lower CO2 
emissions. According to empirical estimation results, 
reducing CO2 emissions is an important way to increase 
forest productivity. In order to reduce CO2 emissions, 
China has pledged to realize carbon peaking, carbon 
neutrality, established “1+N” policy systems, and 
implemented new-type urbanization and other measures. 
Notably, existing studies have shown that increasing 
forest area and intensifying forestry investment can 
reduce CO2 emissions. Therefore, we can resort to 
afforestation to expand forest area and improve carbon 
sink capacity [53]. In addition, we should strengthen 
forest ecological construction and improve forest 
quality. Furthermore, it is necessary to expand financial 
investment in forest and grass industries based on 
regional conditions. West China owns the most abundant 
forest resources, so CO2 emissions has the greatest 
impacts on forest productivity. Parties concerned should 
increase forestry investment and shift the focus from 
resource endowment to CO2 emissions reduction to 
reduce CO2 emissions and increase forest productivity 
simultaneously.

Secondly, endeavors should be made to reduce 
economic loss caused by factors such as environmental 
pollution, natural disasters, geological disasters and 
forest fires. While reducing environmental pollution, 
it is necessary to build more disaster prevention and 
mitigation infrastructure, including strengthening early 
warning and response to natural disasters and improving 
capabilities to withstand them to minimize economic 
loss caused by them. Local governments at all levels 
should add the negative growth of geological disasters 
to their task list and strive to effectively prevent and 
control geological disasters and realize sustainable 
forestry development. More efforts should be made to 
prevent forest fires, as with other disasters, which should 
be supplemented by control measures. The system of 
local administrative heads taking responsibility should 
be adopted. It is also necessary to establish forest 
and grassland fire prevention and control command 
agencies at all levels and strengthen the capabilities of 
comprehensive national fire rescue teams.

Thirdly, technical innovation should be improved. 
Technical innovation can not only reduce forestry 
investment and increase forest productivity directly, 
but also helps reduce CO2 emissions and economic 
loss. Thus, all regions should enhance R&D investment 
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and improve technical innovation. West China made  
the least investment in R&D among the three regions,  
but has the biggest strength to improve forest 
productivity, so it should particularly increase investment 
in R&D to maximize the positive impact of forest 
productivity. In addition, scientific and technological 
cooperation between the eastern and the western regions 
can be carried out to promote collaborative innovation. 
Among the three regions, the eastern region has the 
highest level of technological innovation, so the eastern 
region can provide technical support to the western 
region and improve the scientific and technological 
innovation capacity of the western region.

Finally, endeavors should be made to upgrade 
industrial structure. Rising the proportion of secondary 
industry will reduce forest productivity, so it is necessary 
to upgrade industrial structure. Parties concerned should 
vigorously develop green and low-carbon industries and 
adopt a green and low-carbon production and lifestyle. 
Clean energy and renewable energy should be applied 
in production and life. Coal and clean energy should be 
used in an environment-friendly way so as to reduce 
CO2 emissions while increasing forest productivity.
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